HI,下午好,欢迎来到微信公众号转让!
公众号转让,微信公众号交易平台,公众号出售购买卖价格 24小时服务热线: 4000-163-301

新闻动态

NEWS CENTER

公众号资讯:我们能否让用户体验更安全

2019-09-09

长期以来,我们一直都是在为大多数人制造产品,但随着ML的成熟,我们可以预想一个能大规模实现个性化的世界。例如今日头条,便是基于机器学习,通过算法分发那些更迎合用户兴趣的资讯。

1. 我们能否让用户体验更安全?

最经典的案例就是垃圾邮件处理、银行基于异常检测识别可疑交易或虚假账户等。

基于ML的应用,我们能够相比人工,使用更巨量的数据来进行分析和判断,从而让用户体验更加的安全。

2. 我们能否帮助用户更轻松或更快地实现目标?

这个问题也很常见,例如我们编写邮件时,会有自动填充功能,帮助我们更快的完成邮件的编写。

如果我们购买了一件商品,系统可能为你推荐“其与用户购买该商品时常见的配套商品”,帮助我们更好的完成购物闭环。

3. 我们可以创造以前不可能的新体验吗?

例如,按照世界卫生组织的数据显示,全球有超过3600W盲人,超过2.17亿人有轻度至重度视力障碍,许多人可能会因此而不适应与图片有关的在线社交活动。

Facebook中则有一个功能,通过图片的智能识别用文字简要描述图片内容,用户通过这些描述文字的阅读,能够更好地加入讨论。

二、评估ML是否是解决问题的最佳方法

有一家创业公司帮助酒店通过平板电脑与客户进行沟通,这家公司的某一位工程师将ML引入了该公司的产品中,即建立一个聊天机器人,用来帮助客人更快速的找到与他们住宿有关的相关信息。

它还可以减少通常情况下,不得不回答这些问题的接待员的工作量。通过与接待员的交谈,他们很快发现酒店客人提出的85%的问题来自以下列表:

  • 退房时间是什么时候?
  • 什么时候吃早餐?
  • Wi-Fi密码是多少?

该公司通过在产品中添加一个小功能,用于在客人拿起沟通用平板时立即回答以上的几个问题。

而对于剩余的15%的问题,这家公司尝试使用ML进行处理,但最终发现,剩下的这15%的问题经常需要人工协助才能得到解决。

例如“我可以在酒店使用铁质物品吗?”这类非经典非常规极少见的问题,由于其出现频率之低,机器无法通过大量数据的采集和分析,也就无法通过ML去回答这些问题。

在这种情况下,ML可能就不是最佳的解决方案,让接待员来回答客人这特殊的15%的问题,可能是更加高效且有效的做法。

初次之外,ML需要花费时间和精力来逐步完善。这需要良好的数据来源和大量的迭代才能达到足够好的地步,有时甚至需要一年甚至更久的时间积累。

在积累未到的时候,ML也不一定是最佳的解决办法。