HI,下午好,欢迎来到微信公众号转让!
公众号转让,微信公众号交易平台,公众号出售购买卖价格 24小时服务热线: 4000-163-301

新闻动态

NEWS CENTER

公众号资讯:极广的覆盖面积,带来的直接问题就是庞大的数据量

2019-09-07

极广的覆盖面积,带来的直接问题就是庞大的数据量。随着遥感观测技术的发展,不同成像方式、波段和分辨率的数据放在一起,构成了遥感数据的多元化;尤其在遥感影像方面,使用频率和遥感精度的提高,其数量更是呈现出指数级的增长。

而与数据爆炸形成鲜明对比的,却是数据信息处理的滞后。以遥感图像比对为例,仍然有很多单位在进行检测动态分析的时候,更多地去采用人力,而这直接耗费了大量的时间。

这就像电影里警察靠人眼去对成千上万个摄像头画面进行逐个筛选,能不能准确找到,全看这个人有没有主角光环。

其次,除了大面积荒漠、水土流失等需要较长周期治理的环境问题之外,日常之中的环境污染事件往往是动态性的,比如污水的远程排放、违规开矿挖沙、工业废气排放等等,这些污染行为并不是持续性的,而是发生于一定的时间段内。

环境保护的最佳状态,是彻底切断污染源,以及在污染出现的时候尽可能早地进行遏止。

预防大于治理,这是一个基本准则。

比如上文提及的污水排放、废气排放、开矿挖沙等,其可能在一两个小时之内就可以结束“战斗”。

遥感监测到这些行为倒是没什么问题,但要把照片传回到数据处理中心,然后再进行分析比对,最后做出决策出发制止……一系列流程之后,人家早都收工回家了。

也就是说,遥感在数据分析之外还存在着一个时间差:发现问题和着手解决的时间差。毫无疑问,最大程度上缩短这个时间差,是遥感监测在应对环境保护之时的必然之路。

而说到数据分析和任务处理的低延时,AI自然是当仁不让。

AI,一双环保遥感监测的翅膀

AI+遥感,简单来说可以为以下几个问题提供解决方案。

  1. 解决大范围内的实时检查、实时上报的问题,为需要快速止损的事中环保提供了可能。比如这边刚一开闸排放污水,立即被遥感监测,AI对时间进行快速分析,然后直接提供给处理中心参考意见,大大缩短发现问题和解决问题的时间差;
  2. 针对指数级上升的遥感数据,依靠高分辨率的的遥感精度,再加上AI的超强识别能力,其可以快速对其进行分析处理,同时提高工作效率。例如某市国土资源局识别违章建筑,在利用AI对卫星遥感照片进行自动分析识别与比对之后,仅用一分钟就完成了专业监测专家3个多月的工作量;
  3. 通过对不同时期的数据比对,AI可以对污染趋势进行判断,从而帮助工作人员提出具有超前预判性的解决方案。在大气污染、水污染防治工作中,这项能力的价值尤其值得被关注。

而无论AI为遥感带来的哪一种优势,其实我们都可以看出,中心都围绕着一个“快”字。可以这么说,“AI遥感,快字当先”。

而众所周知,AI之光照进现实之路上,数据不缺乏,算法也不短缺,唯一限制其前进步伐的,就是算力。

这一点对于遥感而言,也是如此。

算力决定了AI进行数据分析处理和输出的绝对时间内。那么,充沛的端侧AI算力就成为了一无人机等飞行器的必备之需。

同时,实现区域性的实时遥感监测,对无人机的数量也提出了要求。然而加载了AI技术的无人机成本并不算低,这也令其大规模的推广存在着阻碍。

那么,无人机编队的产业化低成本,则是配套设施建设的补完之一。

此外,从整体上而言,就像自动驾驶并不仅仅是汽车的事而是要涉及整个道路系统的改造一样,AI+遥感并不是意味着仅仅是设备的补充或者某个模块AI能力的加入,而是要建设一个包括采集、处理、反馈、决策等一体化的遥感云平台机制,这就需要高速的网络和稳定的云服务作为依托。