HI,下午好,欢迎来到微信公众号转让!
公众号转让,微信公众号交易平台,公众号出售购买卖价格 24小时服务热线: 4000-163-301

新闻动态

NEWS CENTER

从而更好的为用户做个性化推荐和精准化服务

2019-05-19

基于今日头条用户分享的图像、文字及用户标签数据,为用户推荐潜在的好友,从而更好的为用户做个性化推荐和精准化服务。

在获取头条用户分享的图像、文字及用户标签的基础上,通过使用AI里深度学习的方法利用图像、文字及用户标签数据来表达用户兴趣特征。基于这三类特征组合,通过计算用户之间的余弦相似度来挖掘与目标用户兴趣最相近的若干个候选用户。

传统推荐系统原理:

推荐系统最早是由Resnick和Varian于1997年提出的,通过利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买哪些商品,模拟销售人员协助客户完成购买过程。

传统推荐系统仅考虑向用户推荐商品的相似度,或推荐相似商品的广告等方式解决用户的信息需求。这种推荐方式用户需从大量的相似商品,或推荐广告中,选择自认为较好的商品或服务。并且是一个非常漫长的过程,且对商品或服务存在一定的信任度。

从另外一个角度分析,传统推荐系统也只是考虑根据用户对某类商品或服务的点击及关注,向用户推荐相似商品的方式来解决用户的需求。

传统推荐系统弊端:

另外,传统推荐系统存在着冷启问题,如:用户行为数据和用户特征数据无法获取,如无法获取这两类数据,系统便无法对用户进行产品推荐。

社群化推荐系统的兴起:

随着社交网站的兴起,社会化推荐系统逐渐开始流行起来,用户购买产品的方式逐渐由传统的系统推荐转向好友(网友)推荐,更多的时候是基于同类兴趣群体,或好友推荐。因为用户类型较为近似的好友或网友,可能在性格爱好方面有着更多的相似性,如:教育或知识结构的相似性、性格的相似性、工作环境的相似性、生活环境的相似性等,都会在社交网站上找到兴趣圈或朋友圈。

社会化推荐系统的普及:

头条类网站伴随时间的发展,逐步演化成用户阅读新闻资讯内容中必不可缺少的工具。传统的推荐系统,从此由内容信息推荐逐渐演化为社会化关系网站用户兴趣信息推荐,内容或服务信息也正演化精神层次信息需求。

如:我们在头条上阅读某条文章然后推荐给我们一个流行的商品或服务,我们希望将购买信息分享到微头条里的每一个人,这也正是头条产品社交化的重要性。